Video over Mobile Infrastructures

Amos Kohn
October, 2008
Video will be one of the Killer-Apps (on Mass Market) of the Current and Next generation cellular networks (3G / 4G / WiMAX).

Cellular networks inherent BW constrains will require better video/network optimization to serve the expected demand for multimedia content and advertisement.
Challenges

- Access BW constrains \rightarrow More video streams per cell (e.i. 50%)
- Dynamic Network load \rightarrow Dynamic Graceful Degradation/Upgrade
- Multiple formats/resolutions
- Maintain video quality including UGC
- Integration with RAN/ ASN (controller \leftrightarrow processor)
- Cost effective solution
- Scalability
Assumptions

● Mobile broadcasting
 - MBMS – not relevant
 - DVB-H /ISDB-T/ DMB → core
 - Broadcast applications – ads, SDV, PVR, push VOD etc’ – to be farther examined

● Mobile Unicast
 - 3G, LTE (4G GSM)
 - Wimax(4G)

● Internet over mobile
Application requirements

Product:

- Content adapter – SVC /Trans-coder/ trans-rater -> frame rate and resolution adjustment and video resizing
- Bandwidth optimizer
- Maintain QoS
- Integrated with the RAN (Radio Access Network)/ASN ()
- Client/server based (controller / processor)
- Real-Time /Off-Line (VOD)
<table>
<thead>
<tr>
<th>Requirements</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>More video streams per cell</td>
<td>Real time</td>
</tr>
<tr>
<td></td>
<td>● Advanced Stat-Mux (between channels over the cell), (Processing pump/ video streaming - according to SLA/ priority)</td>
</tr>
<tr>
<td></td>
<td>Off-line</td>
</tr>
<tr>
<td></td>
<td>● SVC, DPI, (indexing for dropping - advanced preparation required), (integration with VS)</td>
</tr>
<tr>
<td></td>
<td>● Graceful degradation – according to priority/ SVC indexing</td>
</tr>
<tr>
<td>Multiple formats/resolutions (content providers to 3G/ 4G networks and end devices)</td>
<td>Real time</td>
</tr>
<tr>
<td></td>
<td>● Rate/ format adaptation, resolution and video resizing, IP data encapsulation</td>
</tr>
<tr>
<td></td>
<td>Off-line</td>
</tr>
<tr>
<td></td>
<td>● SVC encoding (integration with VS)</td>
</tr>
<tr>
<td></td>
<td>● Indexing</td>
</tr>
<tr>
<td>Requirements</td>
<td>Solution</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dynamic changes of network loads</td>
<td>• Advanced Stat-Mux</td>
</tr>
<tr>
<td></td>
<td>• Smart b/w management</td>
</tr>
<tr>
<td>Maintain video quality</td>
<td>Real-time</td>
</tr>
<tr>
<td></td>
<td>• Look-ahead for rate-control mechanisms SM</td>
</tr>
<tr>
<td></td>
<td>Off-line</td>
</tr>
<tr>
<td></td>
<td>• Generate metadata for real-time quality estimation (advanced preparation/ indexing required)</td>
</tr>
<tr>
<td></td>
<td>• Pre-processing – (advanced preparation/ indexing required)</td>
</tr>
</tbody>
</table>
Tech requirements

- Stream adaptation will be performed in several different ways to support heterogeneous networks and diverse user terminals. Such mechanism will apply multiple techniques dynamically to achieve the best results:
 - Adaptation of spatial resolution
 - Spatial quality
 - Temporal frame rate
 - Sequence duration
 - Spatial domain transcoding (requantization of DCT coefficients and DCT coefficients dropping)
 - Temporal domain transcoding (frame dropping)
 - Object-based transcoding (video object prioritization and dropping)
 - Frame-Layer bit allocation (scene context statistics from the incoming video stream can be utilized to detect scene changes and determine frame type)
 - Macroblock layer rate control (linear rate-quantization model can be used to select quantization parameters for macroblocks)
 - Other scalable coding tools in MPEG-4 also enable the dynamic rate adaptation

- Adaptation algorithm will be used to adjust the bit-rate of video data in response to the network bandwidth available and the user terminal capabilities
Tech requirement

- **Video resolution:**
 - The stream resolution will be dynamically change to accommodate user terminal capabilities and network constrains

- **Stream resizing**
 - Resize filter will be used for resample or cubic interpolation. It will calculates the new value of a pixel based on an examination of the surrounding pixels

- **Multi format processing:**
 - H.264
 - H.263
 - VC-1
 - WMV
 - FLV
 - QT
 - SMIL

- **Minimum resolution:**
 - 176 x 144 / 15 (QCIF)

- **CDN/Caching:**
 - To support near-real-time and VOD rate adaptation and video resizing, a cache with replacement algorithm should be applied in the system solution
Tech requirements

- The stream manipulation will be performed at the following locations:
 - WiMAX: at the Access Service Network (ASN)
 - UMTS: at the Radio Access Network (RAN)

- **Network feedback control**
 - Rate adaptation will be applied on a stream in real-time when a user log-in to available multimedia content/application
 - The trigger to dictate stream adaptation is the same trigger that starts unicast stream (by the user (terminal))
 - The bit rate and quantization level of a stream will be dynamically adjusted in response to the control parameters that will be imbedded in the network feedback control

- **The network feedback control metadata will contain the following information:**
 - Unicast IP
 - Network condition (infrastructure type, available bandwidth)
 - User device type (video resizing requirement). Note: server may contain database of CE devises vs. resolution/resizing supported
 - Stream conditioning adaptation changes requests
Environment

- **Major Customers / End users**
 - MVNOs
 - MNOs

- **Major Partners / sales channel**
 - Alvarion
 - WiNetworks
 - Airspan
 - Lucent-Alcatel
 - Nokia Siemens

- **Geographies**
 - Asia
 - EMEA
 - US
SDV solution for broadband TV over mobile
Strategy Affect of the Market

- SDV will enable to deliver more broadcast content
 - Mobile phone users experience will be similar to other broadcast services such as digital cable or satellite
 - Users will be able to watch a variety of live television programs, traffic reports, movie clips, music videos, listen to digital music
 - View a variety of entertainment and content options

- SDV will provide efficient BW saving
 - Broadcast programs are terminated at the Core Network and at the Radio Access Network
 - BW saving in both wireless and interconnect networks
 - BW adaptation will be applying at the edge to allow service enhancement

- Enrich Content
 - Combine multicast with unicast targeted content. I.e. allow replacement of multicast program (broadcast) with unicast program (targeted ad)
 - Roaming of local station chasing the user on the move
High Level Solution

- **Systems:**
 - DVB-H
 - MediaFLO
 - WiMAX

- **Video resolution:**
 - QVGA up to 30 fps 240x320 pixels

- **BW efficiency:**
 - DVB-H: 8 channels, 6 MHz ~ 300kbps each
 - MediaFLO: 20 channels, 6 MHz ~ 300kbps each

- **Services:**
 - DVB-H 20 to 30 channels on 25 MHz spectrum (3x5)
 - MediaFLO 60 channels on 12 MHz spectrum (2x6)
 - WiMAX: 40 channels unicast + 50 multicast

- **Stream aggregation:**
 - Re-encoding framerate reduction at the National Operation Center
 - Open loop statmux at the Local Operation Center
High level Solution

- Encompasses all input stream type i.e. CBR/VBR
- Stream adaptation to accommodate roamed stream supporting cell phone on the go and available BW on particular cell
- Dynamic stream mapping
- SRM integrated with media GW and packet data traffic signaling as part as the SDV Session Server
- Stream routing controlled by SRM via routing network
- Two level of multicast termination:
 - IP/MPLS
 - Radio Network Controller
- Personalized and targeted ad insertion at the edge
- Stat-muxing
- Encryption at the edge/Bulk encryption??
- Local cache for to support rollover and pause live TV
- Cell phone SDV client – channel Change Protocol (DSM-CC??)
- Mini carousel both upstream and downstream to update SDV client on the cell phone as well as core network broadband multicast switch
- Session building management interface with WiMAX/UMB/UMTS based station
SDV over MediaFLO Network

- **National Ops Center**
 - Internet
 - NOC H.264 QVGA Transcoding
 - National Content Provider

- **Local Ops Center**
 - Internet
 - National + Local Multicast
 - National Content Provider
 - Local Content Provider

- **Wireless Network**
 - Base Station
 - UERM
 - SDVSM Mini Carousel Session Bdg
 - Stream Adaptation Statmux
 - 3G Network Services & Subscription

- **Mobile User**
 - Mobile
 - New Backend
 - 3rd Party
Proposed Goto Market Strategy

- Define first strategic accounts and alliances with integrators
 - ALU and North America (AT&T), EMEA
- Get to definition of product, integrated with integrators
- Buy what we need to buy
- Focus on specific solutions, but across geographies
- Become best of breed in those areas we go for
- Allow lower margins for new solutions/edge architecture
- Timeframe by nature will shift, but need to maintain strong relationship with partners
- Create Joint Marketing-Development Technical Research Group
- First deliverables in 12M (alpha)
- Maintain visibility even as OEM as exit strategy and share value increase